

ATLAS DE EROSIÓN DE SUELOS POR REGIONES HIDROLÓGICAS DEL PERÚ

Nota Técnica 002 SENAMHI-DHI-2017

COLOMBIA

BRASTI

FOUNDOR

à

Evelin Sabino Rojas Oscar G. Felipe Obando Waldo S. Lavado Casimiro

Atlas de Erosión de Suelos por Regiones Hidrológicas del Perú

Nota Técnica N° 002 DIRECCION DE HIDROLOGIA LIMA-PERU 2017

ÍNDICE

1.	INTRODUCCIÓN4							
2.	CONCEPTOS PREVIOS							
2.1		Ero	sión hídrica	4				
2.2		Pro	cesos de Erosión	5				
2.3		Tipo	os de Erosión	6				
2.4		Los	agentes de la Erosión	6				
2.5		For	mas de la Erosión	7				
3.	INF	ORN	MACIÓN METEOROLÓGICA Y CARTOGRÁFICA UTILIZADA	9				
3.1		Bas	e de datos	9				
	a.	Pro	ducto PISCO precm	9				
	b.	Mo	delo Digital de Elevación	11				
	c.	Cok	pertura de Suelo	12				
	d.	Tipo	o de Suelo	13				
3.2		Reg	jiones Hidrológicas	14				
4.	ME.	τορ	OLOGÍA	16				
4.1		Mo	delo RUSLE	16				
4.2		Esti	imación de los factores de Erosión Hídrica	17				
	4.2.	1	Factor de Erosividad	17				
	4.2.	2	Factor de Erodabilidad	17				
	4.2.	3	Factor Topográfico	21				
	4.2.	4	Factor de Cobertura Vegetal	21				
	4.2.	5	Factor de Prácticas de Conservación	22				
4.3		Dia	grama de Flujo del Proceso Metodológico seguido	23				
5.	RES	SULT	TADOS	25				
6.	REF	ERE	ENCIAS BIBLIOGRÁFICAS	50				
Ane	exo 1	l						
Ane	exo 2	2						
Ane	exo 3	5						

PRESENTACIÓN

La pérdida de suelos por erosión hídrica en el Perú es un grave problema ambiental que afecta y pone en riesgo la seguridad hídrica y seguridad alimentaria; toda vez que este fenómeno es más crítico y agresivo en zonas altoandinas que son proveedoras de los principales servicios ecosistémicos hídricos y el espacio donde se desarrolla importante actividad agrícola para la provisión de alimentos a las grandes ciudades costeñas. Por otro lado, al ser la precipitación el principal agente que contribuye al proceso de erosión hídrica, y a su vez, éste se asocia a la producción de sedimentos que genera la colmatación de cauces, degrada la calidad de las corrientes de agua y reduce la capacidad de regulación de embalses; ha motivado al SENAMHI a realizar este trabajo de investigación que aporta información relevante sobre el conocimiento de la evolución de las tasas de erosión en el Perú para una cronología de 30 años. Para alcanzar este objetivo se ha utilizado información de sensoramiento remoto y aplicado la metodología de RUSLE como modelo matemático para la estimación de la tasa de erosión hídrica.

La información que brinda la presente Nota Técnica denominada Atlas de Erosión de Suelos por Regiones Hidrológicas del Perú, a diferencia de los estudios preexistentes en el país, tiene la particularidad de reproducir por primera vez una serie cronológica de mapas de erosión, y para este caso, una secuencia de mapas anuales desde 1981 hasta el 2014, siendo la base geoespacial multitemporal PISCO (Peruvian Interpolation data of the SENAMHI's Climatological and Hydrological Observations), y en particular el producto de precipitación mensual la variable de mayor peso en la elaboración de estos mapas.

El documento trabajado bajo este enfoque multitemporal y espacial permite conocer la evolución de este fenómeno en el tiempo y espacio; así mismo facilita la identificación de tendencias y zonas críticas donde los procesos erosivos han sido más intensos. Los eventos El Niño de 1982-1983 y 1997-98 estuvieron asociados a una mayor tasa de pérdida de suelo por erosión hídrica en cuencas de la región hidrográfica del pacífico, como consecuencia directa del mayor aporte de las precipitaciones. Para el sector Recursos Hídricos, la importancia del Atlas de erosión hídrica a nivel de Regiones Hidrológicas, da un marco general para priorizar intervenciones sectoriales de remediación y/o control en zonas críticas donde el proceso erosivo induce a la mayor producción de sedimentos con implicancia en el deterioro de la calidad del agua por mayor turbiedad, la pérdida de la capacidad de transporte por colmatación de cauces de ríos aumentando el riesgo de inundación y la degradación de los servicios hidrológicos. Estos impactos podrían ser más severos en el contexto de la variabilidad y el cambio climático, en ese sentido es fundamental la implementación de proyectos de control y mitigación del fenómeno de la erosión en el Perú,

Atlas de Erosión de Suelos por Regiones Hidrológicas del Perú

1. INTRODUCCIÓN

El Atlas de Erosión de Suelos constituye un medio de presentar, de forma gráfica, una síntesis del trabajo que pretende contribuir a una mejora del conocimiento sobre el fenómeno de la erosión hídrica en el Perú; su variabilidad en el tiempo y el espacio destinado a una gran variedad de usuarios.

Para hacer frente a la necesidad de información actualizada, se ha elaborado el Atlas de Erosión de Suelos del Perú, donde se establece como objetivo principal la cuantificación de la tasa de pérdida de suelos por erosión hídrica a nivel nacional, con énfasis en las regiones hidrológicas. Para esto se ha determinado los factores climáticos relevantes a la ocurrencia de la erosión. Se calculan también los factores de erosividad como agente activo de la erosión a nivel anual de toda la serie histórica utilizando metodologías empíricas para el análisis de la ocurrencia de este tipo de eventos.

La información básica utilizada en la elaboración del Atlas ha sido aplicada para todo el Perú considerando factores condicionantes como son: las características del suelo, la vegetación del lugar, su topografía y la pluviosidad representada por la lluvia. Teniendo en cuenta que la deposición de los materiales erosionados puede obstruir los caminos o colmatar los cursos de agua y en consecuencia el sedimento puede dañar hábitats acuáticos y degradar la calidad del agua en corrientes, los ríos, y los lagos. Los resultados presentados en esta Nota Técnica permitirá a los planificadores que se ven afectados por el fenómeno identificar las zonas de mayor riesgo al fenómeno de erosión hídrica, proponer e implementar acciones de control.

2. CONCEPTOS PREVIOS

2.1 Erosión hídrica

La erosión no es una entidad, sino un fenómeno concreto y muy diversificado en sus modalidades (Viers, 1974). La erosión, es entendida como la remoción, transporte y deposición de partículas de suelo, materia orgánica y nutriente soluble. Se presenta con diversos grados de intensidad, llegando muchas veces hasta condiciones tales, que no es posible restaurarlas, provocando en consecuencia el desequilibrio de la estabilidad armónica a nivel de cuencas hidrográficas.

Es importante considerar la erosión, porque es un proceso que elimina la capa orgánica superficial del suelo, reduce los niveles de la materia orgánica; en consecuencia, se genera un ambiente menos favorable para el crecimiento vegetal.

La erosión de los suelos es uno de los procesos más dinámicos en el desarrollo del paisaje. Es el proceso responsable de la degradación de suelos, de la reducción del nivel de fertilidad y de la productividad. La erosión es causada principalmente por las lluvias y los escurrimientos (Figura 2.1). Dicha erosión produce una pérdida irremediable del suelo, el cual es para fines prácticos, un recurso no renovable.

Figura 2.1. A y B representan erosión por salpicaduras (lluvia) y los cuadros C y D representan la erosión por escorrentía. *Fuente: (Derpsch et al., 1991)*

2.2 Procesos de erosión

La *erosión*, que es la acción de roer y gastar, provoca una pérdida sustancial del relieve y elabora un vacío, una disminución del volumen.

El *transporte*. La ablación y el desplazamiento de los materiales desgastados presuponen un transporte; es la segunda fase de la erosión. La gravedad de una pendiente seca, el viento, etc., aseguran este desplazamiento.

La *acumulación*. A su vez, el transporte provoca más pronto o más tarde una acumulación. Cuando se verifica en el fondo de las aguas de un lago o de un océano de llama sedimentación; esta operación modifica las formas del relieve terrestre, pero cuando la sedimentación se efectúa al aire libre en un cono de deyección torrencial, en una duna o en unos derrubios, modifica el modelado (Viers, 1974). Se considera que estas tres fases -erosión, transporte, acumulación - son correlativas, unidas inseparablemente de tal modo que la costumbre ha hecho que se denomine a su conjunto el término erosión, en su sentido más amplio. (**Figura 2.2**)

Figura 2.2. PROCESOS DE EROSIÓN. La primera fase es la de erosión o desagregación, la segunda es el transporte de los materiales desgastados y la última fase es la acumulación o sedimentación. *Fuente: Cátedra de manejo de tierras, Facultad de ciencias agrarias, unr. 2012*

2.3 Tipos de erosión

De acuerdo a las fuerzas que actúan y tiempos de ocurrencia, la erosión de suelos se define en dos tipos:

a) Erosión natural o geológica: Es aquella que ocurre como consecuencia solamente de las fuerzas de la naturaleza y cuyas tasas de ocurrencia son generalmente bajas.

b) Erosión acelerada o inducida: Es aquella en la que se agrega la acción del hombre a la acción de los agentes naturales. Este tipo de erosión es propiciado por el mal manejo del suelo.

2.4 Los agentes de la erosión

Los principales agentes que intervienen en el proceso de la erosión son: el agua y el viento. Cuando el agente causal es el agua, la erosión se denomina hídrica, mientras que cuando el agente causal es el viento, se denomina eólica. Existen otros agentes causantes de la erosión que en menor escala y extensión causan movimiento del suelo, tales como la gravedad, la maquinaria, y algunos procesos biológicos. En cualquier caso, la erosión hídrica es la de mayor importancia en el Perú, debido a que en gran parte del país nuestra actividad económica se desarrolla en el sector agrario.

(e)

Figura 2.3. Las imágenes muestran la densidad de la vegetación, la topografía y demás características que determinan los factores climáticos relevantes a la ocurrencia de la erosión de diversos lugares del Perú. (a) Huarochirí, provincia de Lima, centro del Perú. (b) Carhuaz, provincia de Áncash, norte del Perú. (c) Junín, provincia de Junín, centro del Perú. (d) Chanchamayo, provincia de Junín. (e) Iquitos, capital de la provincia de Maynas, del departamento de Loreto. *Fuente: fotografías personales del autor.*

2.5 Formas de la erosión

Erosión por salpicaduras

El salpicado de suelo se origina cuando las gotas de lluvia caen directamente sobre las partículas de suelo o superficies de agua muy delgadas, salpicando cantidades enormes de suelo debido a la energía cinética de impacto.

La cantidad de suelo salpicado varía entre 50 a 90 veces más que las pérdidas por socavación o arrastre. Se calcula que en un suelo descubierto se salpican al aire 224 mg/ha debido a las lluvias frecuentes (Muñoz Gutiérrez, 2006). Sin embargo, el salpicado normalmente no es transportado fuera de las áreas por el impacto como tal. La relación entre erosión y energía e impulso de la lluvia se determina por la masa de las gotas de lluvia, su tamaño, forma, velocidad y dirección.

Erosión Laminar

La erosión laminar remueve uniformemente el suelo en estratos delgados, como consecuencia del flujo superficial laminar que escurre en capas delgadas sobre el terreno.

El impacto de las gotas de lluvia, combinado con el flujo superficial, forma los riachuelos microscópicos iniciales, Desde el punto de vista de la energía, la erosión por las gotas de lluvia es muy importante, pues estas tienen velocidades de flujo superficial que son mucho menores (aproximadamente de 0.3 a 0.6 m/s). Las gotas de lluvias provocan el desprendimiento de las partículas de suelo y al aumentar el sedimento, se llenan los poros de la capa superficial, reduciendo así la tasa de infiltración. La fuerza abrasiva y la de arrastre de la corriente laminar están en función de la profundidad y la velocidad de

escurrimiento para una partícula o agregado de suelo de tamaño, forma y densidad determinados (Rivera Ruiz, 2012).

Erosión en surcos

Cuando el flujo superficial se concentra, el agua actúa sobre el suelo desprendiéndolo originando canales o arroyos pequeños bien definidos, conocidos como surcos o canalillos. Este tipo de canales se vuelven estables y se les ve con facilidad. El desprendimiento y transporte son más severos porque las velocidades de escurrimiento son más altas y el esfuerzo hidráulico cortante aumenta con el grado de la pendiente y el radio hidráulico de la sección del canal.

El flujo concentrado desprende el suelo en el perímetro mojado del surco y transporta el material desprendido junto con el material aportado del área entre surcos, donde normalmente ocurre erosión por salpicado y erosión laminar. Las formaciones de la erosión en surcos son fácilmente eliminadas de los terrenos con el paso de las maquinarias. La cantidad de suelo transportado por la erosión en surcos depende de la relación entre la capacidad de desprendimiento y la capacidad de transporte, así como la carga de sedimentos. Normalmente la capacidad de desprendimiento disminuye con la carga de sedimentos, y viceversa.

Erosión en cárcavas

Esta forma de erosión abre canales de mayores dimensiones que los surcos, los cuales conducen agua durante o inmediatamente después de las lluvias y, a diferencia de lo que ocurre en éstos, el paso de maquinaria difícilmente borra los cauces sin dejar depresiones donde existían las cárcavas. Entonces, la erosión que origina cárcavas u hondonadas es una etapa avanzada de la que produce la erosión en surcos, del mismo modo que ésta, es una etapa posterior de la erosión laminar. El grado de erosión depende fundamentalmente de las características del suelo, del alineamiento, el tamaño, la forma de la zanja y el declive del canal.

Figura 2.4. Modelo de escorrentía y zonas de erosión en una ladera, representada por la mitad del perfil de la pendiente de un valle. *Fuente:* (HORTON, 1945)

3. INFORMACIÓN METEOROLÓGICA Y CARTOGRÁFICA UTILIZADA

3.1 Base de datos y procesamiento

Para la elaboración de la Nota Técnica fue necesario contar con datos de información meteorológica y productos de sensoramiento remoto de alta resolución espacial, que se describe a continuación:

a) Precipitación media mensual para todo el periodo de estudio (1981-2014), para esto se utilizó el producto PISCO precm, llamado así por sus siglas en inglés (Peruvian Interpolation data of the SENAMHI's Climatological and Hydrological Observations. Precipitación mensual v1.0) desde enero de 1981 hasta diciembre 2014, PISCO está a una resolución espacial de 5*5 km.

b) Modelo Digital de Elevación (MDE) elaborado a partir del radar interferométrico Shuttle Radar Topography Mission (SRTM) 4.1 el cual se descargan del CGIAR-CSI (http://srtm.csi.cgiar.org/) en mosaicos provistos de 5° x 5° (ver Fig. 3.2.), los cuales fueron procesados en un sola imagen en un formato ráster GeoTIF.

c) La información de tipos de cobertura vegetal fue obtenida del proyecto Global Land Cover de 30 metros de resolución (GlobeLand30) obtenidos del http://glc30.tianditu.com (ver Fig. 3.3.) a partir de mosaicos provistos de 5° x 6°, esta información es de libre acceso.

d) Para obtener información sobre la taxonomía y las clases texturales del suelo se utilizó la información provista por el SoilGrids 1km, el cual consiste en una colección de mapas sobre propiedades y clase de suelos actualizable del mundo con una resolución de ~ 1 km, los datos WorlSoil 1km pueden obtenerse en el siguiente enlace http://soilgrids.org obteniendo así mapas en formato ráster GeoTIFF a partir de mosaicos provistos de 10°x 10°, los productos descargados fueron las unidades de suelo de acuerdo a la clasificación de la Base Referencial Mundial del Recurso Suelo (World References Base for Soil Resources - WRB) y para obtener la clasificación de las clases texturales se descargaron ráster GeoTIFF de porcentajes de arcilla, limo y arena (ISRIC, 2010) para el ámbito de estudio.

a. Producto PISCO precm

El SENAMHI a través de la Dirección de Hidrología ha comenzado a producir el producto PISCO precm. Presentando una serie temporal de datos hidroclimáticos de alta resolución espacial (5 km) y teniendo como meta generar datos a escalas temporales diarias y mensuales de las variables precipitación, temperatura máxima y mínima, evapotranspiración y caudales.

El producto PISCO de precipitación, en su primera versión V.1 tiene un área de influencia nacional y consiste de datos grillados mensuales desde enero de 1981 hasta diciembre del 2014.

Para la generación de PISCO precm se utilizaron datos que consistieron en:

- + Una base de precipitación de todo el Perú y
- + Datos satélites del producto CHIRPS a escala mensual

Los datos observados fueron obtenidos por el Servicio Nacional de Meteorología e Hidrología (SENAMHI), fueron sometidos a un proceso de control de calidad visual enfocado en reportar valores atípicos y quiebres temporales de precipitación. Como la aplicación requería la máxima cantidad de datos observados, se trató de colectar la mayor información observada; es decir, si se encontraban series con posibles errores en un intervalo temporal este periodo fue eliminado quedándose con el intervalo más semejante al de las estaciones temporales de precipitación. Finalmente se obtuvieron datos para el periodo 1981-2015 con un número de estaciones variable desde 180 hasta 448, cuya condición exigía que tengan al menos 10 años de registro (un año con al menos 9 meses de datos, ver Fig. 3.1).

Los datos CHIRPS, provenientes de Climate Hazards Group (CHG) de la University of California, Santa Bárbara (UCSB), corresponden a un producto grillado mensual con una resolución espacial de 0.05°, disponibles online con un registro desde 1981 hasta la actualidad. Las observaciones del GHC provienen de una variedad de fuentes, tales como: La Red Global Histórica Climática Mensual (GHCN) versión 2 (Peterson & Vose, 1997), archivos diarios del GHCN (Durre 2010); la información de la Base de datos del Resumen Global del Día (GSOD) del Centro de Datos Climáticos Nacional de la NOAA; archivos de datos diarios del Sistema Global de Telecomunicación de la Organización Meteorológica Mundial (GTS), provenientes de la NOAA, CPC y los servicios meteorológicos nacionales.

Figura 3.1. Evolución temporal mensual de la cantidad de datos utilizados para generar PISCO-precipitación. *Fuente: DHI*

Estimación de PISCO - precipitación

PISCO - precipitación v0.1 es el producto resultado de la combinación ("merging") entre los datos de precipitación estimados por el satélite del producto CHIRPS ("Climate

Hazards Group InfraRed Precipitation with Stations") y los datos de precipitación observados de la red de estaciones meteorológicas del SENAMHI.

Para la combinación se ha utilizado la técnica geoestadística Kriging con Deriva Externa (KED) por ser esta una técnica robusta y relativamente sencilla. En esta metodología, la variable a regionalizar es la precipitación observada (PO) y la covariable de la precipitación es la precipitación estimada por el satélite (producto CHIRPS), en la cual se realiza simultáneamente una regresión lineal entre PO y CHIRPS; para luego los errores residuales de esta regresión se interpola mediante la técnica de Kriging ordinario. Finalmente PISCO – precipitación v1.0 es el resultado de la suma espacial entre los valores estimados por la regresión y los valores residuales interpolados.

El proceso de combinación se realizó de manera independiente para cada mes de la serie histórica (enero 1981 hasta diciembre del 2015), debido a que se cuenta con diferente número de estaciones en cada mes y que el método KED demanda de un modelamiento de semivariogramas residuales para establecer el semivariograma teórico (Esférico, Exponencial o Gausiano) de mejor ajuste en cada mes.

b. Modelo Digital de Elevación-MDE

El territorio peruano cuenta con tres productos que brindan información altimétrica de libre acceso: la carta nacional del IGN a la escala 1:100 000, el MDE a partir de técnicas interferométricas, Shuttle Radar Topography Mission (SRTM) y el MDE a partir de técnicas esteroscópicas, Advance Space Borne Thermal Emisión and Reflection Radiometer (ASTER).

Si bien se puede trabajar con cualquiera de los datos antes expuestos, se optó finalmente por utilizar el producto SRTM debido a su mayor precisión y mayor aplicación en investigaciones hidrológicas.

Los datos digitales de elevación SRTM, producido originalmente por la NASA, representa un gran logro en la cartografía digital del mundo, y proporcionan un importante avance en la accesibilidad de los datos de elevación de alta calidad para una gran parte de las regiones tropicales y otras zonas del mundo en desarrollo. El MDE SRTM v.4.1 versión que incorpora los métodos de interpolación descritos en el artículo "An evaluation of voidfilling interpolation methods for SRTM data" (Reuter *et al.*, 2007); para completar las zonas sin información producto de sombras muy espesas y lagunas.

Figura 3.2. Portal de Descargas del MDE SRTM 4.1. *Fuente: srtm.csi.cgiar.org/SELECTION/inputCoord.asp*

c. Cobertura de suelo

Con el fin de apoyar la investigación sobre los cambios globales y el desarrollo del sistema de la tierra de manera efectiva, el Ministerio de Ciencia y Tecnología de China ha puesto en marcha el Programa Nacional de Investigación de Alta Tecnología y Desarrollo de China (Programa 863) llamado "Mapeo de la teledetección y la investigación sobre tecnologías clave de la cobertura terrestre mundial" en el 2010 (National Geomatics Center of China, 2014).

Uno de los resultados del proyecto es el GlobeLand30-2010 que es producto de la cartografía de la cubierta mundial terrestre con una resolución espacial de 30 metros, derivado de imágenes de teledetección del año 2010. El producto GlobeLand30-2010 es organizado en mosaicos:

- i) 60° N 60° S: 5° (latitud)*6° (longitud);
- ii) 60 80° N y 60 80° S: 5° (latitud)* "12° (longitud)

Consta de 10 tipos de cobertura del suelo, los cuales son: tierra cultivada, bosque, pradera, matorral, humedal, cuerpos de agua, tundra, superficies artificiales, tierra desolada y nieve y hielo permanente.

Figura 3.3. Portal de Descargas del GlobeLand30.2010 *Fuente:* www.globallandcover.com/GLC30Download/index.aspx

d. Tipo de suelo

Los datos de tipo de suelo es quizás la información más complicada de obtener debido a su alto costo y excesivo trabajo de campo necesario. Para el presente estudio se utilizó la información provista por el SoilGrids1km esta es una colección de mapas sobre propiedades y clase de suelos actualizable del mundo con una resolución de ~ 1 km y 250 m (este último incorporado recientemente en el 2016) de resolución espacial, producida utilizando la cartografía automatizada del suelo basada en algoritmos de inteligencia artificial.

Los datos WorlSoil1km pueden obtenerse en el siguiente enlace http://soilgrids.org o vía FTP ftp://ftp.soilgrids.org/, en formato ráster GeoTIFF a partir de mosaicos provistos de 0.1 x 0.1°.

Figura 3.4. Mapas del Porcentaje de arcilla, limo y arena respectivamente para todo el Perú. *Fuente: Elaboración propia*

3.2 Regiones Hidrológicas

El Perú cuenta con una delimitación y codificación de Unidades Hidrográficas, elaborado con la metodología de codificación de Unidades Geográficas Pfafstetter, aprobada mediante ley con la RM N° 033-2008-AG (SIG-IRH / INRENA, 2008). En base a estas Unidades Hidrográficas, HALCROW, en el año 2010 elabora el Atlas del Potencial Hidroeléctrico del Perú, proponiendo así la delimitación de **14 Regiones Hidrológicas** a partir de las 159 unidades hidrográficas (MINEM, 2011). Estas regiones hidrológicas se han tomado como unidades espaciales de análisis para la cuantificación de las tasas de erosión en el Perú. Ver Figura 3.6.

Sistema de codificación Pfafstetter

El Sistema de Codificación Pfafstetter desarrollado por Otto Pfafstetter en 1989. difundido a partir de 1997 por Verdin y adoptado a partir de entonces por la United States Geological Survey (USGS - Servicio Geológico de los Estados Unidos), como estándar internacional. Es una metodología para asignar Identificadores Ids a unidades de drenaje basado en la topología de la superficie del terreno; dicho de otro modo asigna Ids a una relacionarla vecinas. locales cuenca para con sus cuencas е internas (INRENA/IHR/DIRHI/SIG, 2007).

De acuerdo al sistema Pfafstetter, existen tres tipos de unidades de drenaje: *cuenca, intercuenca y cuenca interna.*

- + **Cuenca,** es una área que no recibe drenaje de ninguna otra área, pero si constituye con flujo a otra unidad de drenaje a través del curso del río, considerado como principal.
- + **Intercuenca,** es un área que recibe drenaje de otra unidad aguas arriba, es una unidad de tránsito del río principal.
- + **Cuenca interna,** es un área de drenaje que no recibe flujo de agua de otra unidad ni contribuye con flujo de agua a otra unidad de drenaje o cuerpo de agua.

Figura 3.5. Clasificación de cuenca, intercuenca y cuenca interna. En números, orden de ríos

Fuente: Informe técnico: delimitación y codificación de unidades hidrográficas del perú. Inrena/irh/dirhi/sig 2007

Figura 3.6. Mapa de las 14 Regiones Hidrológicas del Perú

4. METODOLOGÍA

4.1 Modelo RUSLE

La metodología utilizada para estimar la pérdida de suelo está basada en el modelo de la *"Universal Soil Loss Equation"*, USLE, presentada en sus inicios por Wischmeier y Smith en el año 1962 y publicada posteriormente en su forma definitiva en el Manual 534 del Departamento de Agricultura de los Estados Unidos (Wischmeier & Smith, 1978). Este modelo tiene su versión modificada *"Revised Universal Soil Loss Equation"* (RUSLE), de Renard y Foster 1989. Esta metodología tuvo buena aceptación en América y en países con problemas de erosión. EL Modelo matemático del RUSLE, utilizado por Renard se indica en la ecuación 4.1

$$A = R \cdot k \cdot LS \cdot C \cdot P \tag{4.1}$$

Donde:

- A: es el cálculo del promedio espacial y temporal de la pérdida de suelo por unidad de área (ton · ha⁻¹ · año⁻¹), expresadas en las unidades seleccionadas para el factor K y para el periodo seleccionado del factor R.
- R: es el factor de *erosividad* (MJ \cdot mm \cdot ha⁻¹ \cdot h⁻¹ \cdot año⁻¹) de lluvia.
- K: factor de *erodabilidad* (ton · ha · h · ha⁻¹ · MJ⁻¹ · mm⁻¹) del suelo, es la tasa de pérdida de suelo por unidad del índice de erosión para un suelo determinado.

Los demás factores son considerados fijos y no tienen dimensiones:

- L S: el factor *L* de longitud de pendiente, el cual nos da la proporción de pérdida de suelo de la longitud de pendiente de la zona de estudio y el factor S que nos dice que tan escarpado se encuentra la pendiente, mide la relación de pérdida de suelo de la inclinación de la pendiente en la zona de estudio. En la ecuación se considera el factor **LS** como el factor topográfico que resulta de la multiplicación de los factores de L y S (Pan & Wen, 2014)
- C: el factor de cobertura vegetal de las relaciones de la pérdida de suelo de un área con cobertura y la gestión de pérdida de suelo específico.
- P: el factor de prácticas de conservación o prácticas de apoyo de la pérdida de suelo con una práctica de apoyo, como el de contorno o pérdida de suelo de terrazas.

En función al RUSLE se estima las pérdidas de suelo anuales, como valor promedio de un periodo representativo de años, que se producen en la superficie del terreno debido a la erosión superficial, laminar y en regueros, ante variables que determinan condiciones de clima, suelo, relieve, vegetación y uso de suelo. La hipótesis de partida del modelo RUSLE se centra en considerar a las precipitaciones como el principal agente activo de esta erosión superficial.

En el territorio peruano tenemos mucha variabilidad de relieves, debido a que nuestras regiones van desde el nivel del mar en la costa y puede llegar a una altitud de 6768 msnm en su punto más alto en el Huascarán (Cordillera Blanca), Áncash. La erosión resultante también varía según sea el tipo de vegetación que protege al suelo, las

prácticas de cultivo o de aprovechamiento de dicha vegetación. El factor topográfico (LS) y el factor de cubierta vegetal (C), son los que matizan la acción erosiva de las lluvias sobre la erosionabilidad de cada suelo, dando como resultado tasas de erosión diferente en cada caso.

La aplicación de RUSLE frente a la USLE inicial no siempre procede de una ampliación de los datos experimentales, sino de una mayor extrapolación estadística de los ya existentes, a veces fuera de los límites físicos de los que se derivaron las expresiones analíticas (Renard *et al.*, 1997). Una de las características más notables de la nueva versión de USLE es que en ocasiones necesita una información más detallada del terreno en estudio, no siempre fácilmente disponible.

4.2 Estimación de los factores de erosión hídrica

4.2.1 Factor de erosividad (R)

El factor erosividad de la lluvia es un índice numérico que expresa la capacidad de la lluvia para erosionar el suelo (Wischmeier & Smith, 1978). En la forma original de RUSLE el factor R se calcula como la suma promedio anual de la erosividad de las tormentas individuales, que se calcula como el producto de la energía total de la tormenta y la intensidad máxima de 30 minutos de duración (Wischmeier y Smith, 1958). A nivel nacional no contamos con registros de intensidad de lluvia (mm/h) para la aplicación del método; sin embargo se ha utilizado la ecuación 4.2 desarrollada por Wischmeier y Smith (1978) para el cálculo del factor "R",

$$R = \sum_{i=1}^{12} 1.735 \times 10^{(1.5\log_{10}(P_i^2/p) - 0.08188)}$$
(4.2)

Donde R, el factor erosividad de lluvias está en MJ mm ha⁻¹ h⁻¹ año⁻¹; *Pi* es la precipitación mensual que está en mm y p la precipitación anual en mm.

La distribución del tamaño de las gotas de lluvia incluye una mayor proporción de gotas grandes, con diámetros superiores a 4.0 mm, cuando las intensidades de lluvia oscilan entre 50.0 y 100.0 mm por hora, o superan los 200.0 mm/h. Las gotas mayores de 4.0 mm de diámetro son inestables y se rompen, si bien con intensidades superiores a 200.0 mm/h vuelven a unirse las de menor tamaño, de forma que las intensidades de lluvia más erosivas son las comprendidas entre 50.0 y 100.0 mm/h, y las superiores a 250.0 mm/h (Gonzáles del Tánago, 1991).

4.2.2 Factor de erodabilidad (K)

Es una medida empírica que expresa la susceptibilidad inherente del suelo a la erosión del agua y está determinada por las propiedades intrínsecas del suelo. El factor K se califica en una escala de 0 a 1, donde 0 indica suelos con menor susceptibilidad a la erosión y al mismo tiempo, 1 indica suelos que son altamente susceptibles a la erosión por el agua.

La ecuación utilizada por Wischmeier y Smith considera la humedad y el estado de la superficie del suelo en el momento de las lluvias, teniendo un rango de variación estacional a lo largo del año. Experimentalmente se comprueba que los suelos más erosionables corresponden a texturas intermedias (fracción de limos más abundante), considerando que los suelos con un porcentaje de arcillas superior al 30% son poco erosionables (Gonzáles del Tánago, 1991).

Las propiedades del suelo también están influenciadas por su textura, la cual también va a definir su erodabilidad. Existen varios métodos para estimar el factor K; Wischmeier & Smith, 1978 proponen una ecuación para determinar su valor, donde se incluyen los siguientes factores: porcentaje de limo + arena fina (partículas de 0.002 a0.1 mm de diámetro); porcentaje de arena (partículas de 0.1 a 2.0 mm); contenido de materia orgánica (%); estructura y permeabilidad (Loredo Osti *et al.*, 2007). Cuando no se cuente con los datos necesarios de suelos para utilizar el nomograma, la Food and Agriculture Organization of the United Nations (FAO) propone un método sencillo para estimar el Factor K (FAO, 1980), donde se utiliza la unidad de clasificación del suelo FAO/United Nations Educational, Scientific and Cultural Organization (UNESCO) y la textura (Figura 4.1). Como parámetros para determinar K (Tabla. 4.1.) (IUSS Grupo de Trabajo WRB, 2007).

Figura 4.1. Diagrama triangular de las clases texturales básicas del suelo según el tamaño de partículas. *Fuente: United States Departament of Agriculture (USDA)*

Tabla 4	.1.	La d	clasif	icac	ión	text	ural	de	sue	los,	está	clas	sific	ada	en	textu	Iral	gene	erale	s de
	gr	ues	a, m	edia	y fi	na de	e ac	ue	rdo a	al p	orcer	ntaje	e de	are	na,	limo	y a	rcilla	•	

Nombres de los suelos (textura general)	Arena (%)	Limo (%)	Arcilla (%)	Clase textural	N°	Textura
	0-45	0-40	40-100	Arcilloso	1	
Suelos francos (textura moderadamente fina)	0-20	40-60	40-60	Arcilloso limoso	2	
	45-65	0-20	35-55	Arcilloso arenoso	4	
	0-20	40-73	27-40	Franco limoso arcilloso	3	Fina
Suelos arcillosos (textura fina)	45-80	0-28	20-35	Franco arenoso arcilloso	5	
	20-45	15-52	27-40	Franco arcilloso	6	
	0-20	88-100	0-12	Limoso	7	
Suelos francos (textura mediana)	20-50	74-88	0-27	Franco limoso	8	Media
	23-52	28-50	7-27	Franco	9	
Suelos arenosos (textura gruesa)	86-100	0-14	0-10	Arenoso	10	
	50-70	0-50	0-20	Franco arenoso	11	Gruesa
Suelos francos (textura moderadamente gruesa)	70-86	0-30	0-15	arenoso Franco	12	

		textula de suelo			
Unic	lades de suelo d	le acuerdo a la clasificación de Grupos de Suelos de Referencia (GSR)	т	'extura	
Cód	Tipo de Suelo	Breve descripción	Gruesa	Media	Fina
AC	ACRISOLES	Muy ácido. Suelos fuertemente meteorizados con baja saturación con bases en alguna profundidad.	0.026	0.04	0.013
AL	ALISOLES	Suelo con baja saturación con bases en alguna profundidad.	0.026	0.04	0.013
AN	ANDOSOLES	Suelos negros de paisajes volcánicos, se desarrollan en evecciones o vidrios volcánicos baio casi cualquier clima.	0.026	0.04	0.013
AR	ARENOSOLES	En la zona seca hay poco desarrollo del perfil. Los Arenosoles en los trópicos perhúmedos desarrollan horizontes eluviales <i>álbicos.</i>	0.013	0.02	0.007
CL	CALCISOLES	Suelos con sustancial acumulación de calcáreo secundario. Los Calcisoles típicos tienen un horizonte superficial pardo pálido.	0.053	0.079	0.026
СМ	CAMBISOLES	Suelos con por lo menos un principio de diferenciación de horizontes en el subsuelo evidentes por cambios en la estructura y color	0.026	0.04	0.013
СН	CHERNOZEM	Suelos negros ricos en materia orgánica. Horizonte superficial <i>mólico</i> pardo oscuro a negro	0.013	0.02	0.007
DU	DURISOLES	Suelos fuertemente meteorizados con una capa dura de sílice secundaria (<i>horizonte petrodúrico</i>) o nódulos de sílice secundaria (<i>horizonte dúrico</i>).	0.053	0.079	0.026
FR	FERRALSOLES	Suelos rojos y amarillos tropicales con alto contenido de sesquióxidos.	0.013	0.02	0.007
FL	FLUVISOLES	Suelos desarrollados en depósitos aluviales. Perfiles con evidencia de estratificación; débil diferenciación de horizontes.	0.026	0.04	0.013
GL	GLEYSOLES	Suelos con signos claros de influencia del agua freática. Evidencia de procesos de reducción con segregación de compuestos de <i>Fe</i>	0.026	0.04	0.013
GY	GIPSISOLES	Suelos con acumulación de sulfato de calcio, con o sin carbonatos, concentrada en el subsuelo. Horizonte superficial de color claro.	0.053	0.02	0.007
нѕ	HISTOSOLES	Suelos de turba y pantanos. La mineralización es lenta y la transformación de restos vegetales a través de la desintegración bioquímica crea una capa superficial de moho	0.053	0.02	0.007
ĸs	KASTANOZEMS	Suelos pardos oscuros ricos en materia orgánica. Los Kastanozems tienen un perfil similar a los Chernozems pero el horizonte superficial rico en humus es más delgado	0.026	0.04	0.013
LP	LEPTOSOLES	Suelos someros, finos. Los Leptosoles son suelos azonales y particularmente comunes en regiones montañosas.	0.013	0.02	0.007
LX	LIXISOLES	Suelos con diferenciación pedogenética de arcilla (migración de arcilla) entre el suelo superficial con menor y el subsuelo con mayor contenido de arcilla	0.013	0.02	0.007
LV	LUVISOLES	Diferenciación pedogénica del contenido de arcilla	0.026	0.04	0.013
NT	NITISOLES	Suelos tropicales rojos, profundos, bien drenados con un horizonte subsuperficial arcilloso <i>nítico</i> que tiene elementos estructurales de bordes planos o nuciformes	0.013	0.02	0.007
РН	PHAEOZEMS	Suelos ricos en materia orgánica. Los Phaeozems son muy parecidos a Chernozems y Kastanozems pero están más intensamente lixiviados	0.013	0.02	0.007
PL	PLANOSOLES	Suelos con un horizonte superficial de textura gruesa abruptamente sobre un subsuelo denso y de textura más fina, típicamente en tierras planas	0.053	0.079	0.026
PT	PLINTOSOLES	Fuerte meteorización con segregación subsecuente de plintita a la profundidad de fluctuación del agua freática o drenaje superficial impedido	0.026	0.04	0.013
PZ	PODZOLES	Suelos con un horizonte iluvial spódico debajo de un horizonte subsuperficial con apariencia de ceniza y cubierta por una capa orgánica	0.053	0.079	0.026
RG	REGOSOLES	Suelos débilmente desarrollados en material no consolidado, que no tienen un horizonte mólico o úmbrico, no son muy someros	0.026	0.04	0.013
LX	SOLONCHAKS	Suelos salinos. Desde débil a fuertemente meteorizados, muchos Solonchaks tienen un patrón de color gléyico a cierta profundidad	0.053	0.04	0.013
LV	SOLONETZ	Suelos con alto contenido de Na y/o Mg intercambiables	0.053	0.079	0.026
UM	UMBRISOLES	Suelo superficial oscuro. Horizonte superficial úmbrico o cámbico con baja saturación de bases	0.026	0.04	0.013
VR	VERTISOLES	Suelos muy arcillosos, que se mezclan, con alta proporción de arcillas expansibles. Estos suelos forman grietas anchas y profundas cuando se secan	0.053	0.079	0.026

Tabla 4.2.	Valores del factor de erodabilidad (factor K) de acuerdo a la taxonomía y la
	textura de suelo

4.2.3 Factor topográfico (LS)

Tanto la longitud de la ladera como su pendiente influyen considerablemente en las tasas de erosión de un suelo, siendo el relieve uno de los principales factores que determina la producción de sedimentos de las cuencas vertientes.

Según la Figura 2.4, observamos que respecto a la longitud de declive existe una zona considerada como "zona sin erosión", en la parte más alta de la ladera; la aparición de fenómenos erosivos de mayor intensidad en la parte media y la sedimentación como proceso dominante en la parte más baja de la ladera, donde generalmente disminuye la pendiente.

El factor de longitud (L) de ladera es adimensional, definido como el cociente en la tasa de erosión anual de una parcela con una longitud de ladera determinada. El factor de pendiente (S), definido como el cociente entre la tasa de erosión de una determinada parcela con una pendiente.

La topografía global contribuye con dos factores a la erosión del suelo en el método RUSLE, estos son el factor de longitud (L) y el factor pendiente (S) (Renard et al., 1997). Ambos factores multiplicándose pueden generar el factor LS. La ecuación 4.2 desarrollada por Jiang y Zheng (2008), se utilizó para calcular el factor LS en el estudio.

$$LS = 1.07 \left(\frac{\lambda}{20}\right)^{0.28} \left(\frac{\alpha}{10^{a}}\right)^{1.45}$$
(4.2)

Donde *L* es el factor de longitud pendiente; *S* es el factor de inclinación de pendiente; λ es la longitud de pendiente a lo largo de la proyección horizontal (m); y α es el ángulo de inclinación en grados. Fue necesario un DEM para derivar los factores con la ayuda del software SAGA GIS (Grayson & Ladson, 1991). La distribución espacial del factor LS tiene un rango de 0 a 152. Los valores de este factor son adimensionales.

4.2.4 Factor de cobertura vegetal

La cubierta vegetal es el elemento natural de protección del suelo frente a la fuerza erosiva de las precipitaciones, controlando no sólo la energía con la que llegan las gotas de lluvia a la superficie del suelo, si no la velocidad de la escorrentía superficial (Gonzáles del Tánago, 1991).

Los principales factores que controlan la cubierta vegetal son las copas, superficie de la vegetación, uso de la tierra, rugosidad de la superficie y la humedad del suelo. Esta amplia gama de factores es difícil y costoso para estimar, a menudo varía considerablemente todo el año.

Es por eso, que una buena estimación del factor de cobertura que sólo da cuenta de la cubierta vegetal se puede derivar rápidamente a partir de imágenes de satélite. Para esto utilizamos imágenes del Global Land Cover (disponibles en http://www.landcover.org), que desarrolla y distribuye datos de sensores remotos por satélite en los productos que explican la cobertura de la Tierra a escala local y global.

En la Tabla 4.3. Tenemos los valores de los factores de C, basados en la clasificación del GLC y una reclasificación de los valores del factor.

Código	Тіро	Contenido	Factor C
10	Tierra Cultivada	Las tierras utilizadas para la agricultura, horticultura y jardines	0.63
20	Bosque	Tierras cubiertas de árboles, con cubierta vegetal más del 30%	0.003
30	Pradera	Terrenos cubiertos de césped natural con una cubierta más del 10%	0.09
40	Matorral	Tierras cubiertas de arbustos con una cubierta de más del 30%	0.22
50	Humedal	Tierras cubiertas de plantas de humedales y cuerpos de agua	0
60	Cuerpos de agua	Las masas de agua en la superficie terrestre	0
70	Tundra	Hierbas y arbustos en las regiones polares	-
80	Las Superficies Artificiales	Tierras modificadas por las actividades humanas	0.09
90	Tierra Desolada	Tierras con cubierta vegetal inferior al 10%	0.5
100 Nieve y Permanente		Tierras cubiertas por la nieve permanente, y la capa de hielo	0

Tabla 4.3. Valores del factor de cobertura vegetal (c)

4.2.5 Factor de prácticas de conservación

Este último factor de RUSLE recoge la influencia que tienen las prácticas de conservación de suelos sobre las tasas de erosión, realizando los trabajos culturales o disponiendo la vegetación siguiendo curvas de nivel, en fajas o en terrazas para cortar las líneas de escorrentía.

La influencia de la práctica de conservación consiste en disminuir la longitud del declive efectivo para la escorrentía.

Pendiente (%)	Contorno	Cultivo en franjas	Terraza
0.0 - 7.0	0.55	0.27	0.10
7.0 - 11.3	0.60	0.30	0.12
11.3 - 17.6	0.80	0.40	0.16
17.6 - 26.8	0.90	0.45	0.18
26.8 >	1.00	0.50	0.20

Tabla 4.4.	Factor de	e Prácticas	de Conserva	ación (P)	(Kim,	2006)
------------	-----------	-------------	-------------	-----------	-------	-------

4.3 Diagrama de flujo del proceso metodológico seguido

La estimación de cada de uno de los factores de erosión que ingresa en el modelo RUSLE se pudo haber elaborado en un entorno de Sistema de Información Geográfica (SIG); sin embargo teniendo en cuenta la extensa superficie continental del Perú de l'285 215.60 km²) resulta un poco complejo y más aún haber reproducido series mapas de erosión alta resolución espacial. Por esta razón el procesamiento de datos espaciales se ha codificado en un lenguaje de programación *"R"*, y para otros procesos se usaron SIG como el *Saga Cis versión 2.1.3, QCIS versión 2.14* y el *ArcMap versión 10.2.2.* Para la estimación de cada factor se tomó en cuenta lo siguiente:

- Datos de entrada de Información Pluviométrica. Se utiliza el producto PISCO precipitación mensual espacializada (Pm) y se estima mediante la ecuación del factor *R*, el índice de erosividad mensual para el periodo de estudio (desde enero de 1981 hasta diciembre del 2014) y finalmente se estima el factor de erosividad anual. Para este proceso se elaboró un código en la plataforma de RStudio (v0.98) correspondiente a la ecuación (4.2). Cada Mapa del Factor Erosividad Pluvial Anual (Anexo 1) está en un formato ráster GeoTIFF y el tamaño de cada celda ráster es de 250 metros.
- Con un Modelo de Elevación Digital (DEM) se pudo obtener el factor topográfico, para lo cual se utilizó el SAGA GIS (Menú: Análisis de Terreno, Hidrología, Índices Topográficos y el módulo del Factor LS) (Oliveira *et al.*, 2013). Un paso previo para el procesamiento del DEM, es determinar su consistencia hidrológica para lo cual se realiza las correcciones necesarias, como es el relleno de sumideros (Ferrero, 2004).
- Con un mapa de Porcentajes de Pendiente realizamos la reclasificación para poder estimar el Mapa de Prácticas de Conservación (Anexo 2).
- El producto GlobeLand30 (National Geomatics Center of China, 2014) clasifica la cobertura vegetal de todo el Perú en 10 tipos de cubierta (Tabla 4.3), de acuerdo a esta clasificación de cobertura reclasificamos pixel por pixel los valores correspondientes para cada Factor C, logrando como resultado el Mapa de Cobertura Vegetal (Anexo 2).
- Para la obtención de la información sobre las características del suelo a nivel nacional, fue necesario utilizar las imágenes satelitales en formato ráster GeoTIFF del SoilGrids (Hengl *et al.*, 2014). Para obtener las clases texturales básicas del suelo según el tamaño de partículas (Figura 4.1) es necesario contar con Mapas de porcentaje de arcilla, limo y arena para luego hallar la clasificación textural de suelos con el software SAGA GIS (Menú: Rejilla, Análisis, Análisis de suelo y su módulo de Clasificación de Texturas de Suelo), obteniendo como resultado un mapa que tiene la clasificación de 12 clases (Tabla 4.1) según el diagrama triangular de clases texturales, luego se reclasifica las 12 clases de texturas en sólo 3 tipos de Texturas de Suelo, las cuales son: grueso, medio y fino. Obteniendo así un nuevo mapa de Texturas de Suelo con sólo 3 tipos de texturas. Finalmente con el Mapa de Taxonomía de suelos de 32 tipos, según la GSR (Tabla 4.2), reclasificamos los

valores del factor K según los tres tipos de texturas de suelo. Obteniendo como resultado el Mapa de Erodabilidad de Suelo (Anexo 2).

Finalmente una vez estimado los factores R, LS, P, C y K utilizamos la ecuación (4.1.) para estimar la erosión de suelos anual del periodo de estudio (Anexo 3).

Figura 4.2. Diagrama de flujo del proceso de cálculo para la estimación de la erosión utilizando el método del RUSLE

5. RESULTADOS

Los resultados son presentados por Región Hidrológica, en tres secciones:

- + En la primera, se presenta el listado de unidades hidrográficas que comprenden cada región hidrográfica definida en tablas que indican, por cada una, el nombre de cada unidad hidrográfica y su código nacional.
- + En la segunda, se muestran los resultados multianuales (1981-2014) de erosión de suelos para región hidrográfica en gráficos. Para este caso la región Atlántico 8 fue excluida por sus niveles bajos de erosión hídrica identificada.
- + En la tercera, se presentan cuadros y gráficos correspondientes a la estimación del porcentaje de área de afectación según grado de erosión de acuerdo a la clasificación FAO.

La erosión de suelos en la Región Hidrológica Pacífico 1

En el mapa de la Figura 5.1 se ilustra la Región Hidrológica Pacífico 1 ubicada al sur del Perú y comprende 22 cuencas. Tiene un área de 34 710 km².

En la Figura 5.2 se muestran los niveles de erosión anual promedio para toda la región desde 1981 hasta el 2014. El promedio de las series anuales de erosión indica para esta región módulo de un 50.0 Tn/ha/año, considerada como grado de erosión Alta, según clasificación FAO. El nivel más alto de erosión se el año 2001 (135.0 presentó Tn/ha/año) con la ocurrencia del Evento La Niña 2000-2001 que se caracterizó por ser un año muy húmedo. La menor tasa de erosión se presentó en 1983 (5.0 Tn/ha/año), caracterizada por el impacto de la seguía de El Niño 1982-83.

Figura 5.1. Mapa de ubicación de la Región Hidrológica "Pacífico 1"

Figura 5.2. Erosión hídrica anual estimada para la Región Hidrológica "Pacífico 1"

Tabla 5.1. Unidades Hidrográficas parala Región Pacífico 1

Región	Nombre	Código
	Cuenca Caplina	CAP
	Intercuenca 13159	Z23
	Intercuenca 13171	Z24
	Cuenca Lluta	LLU
	Cuenca Ilo - Moquegua	MOQ
	Cuenca Locumba	LOC
	Cuenca Sama	SAM
	Cuenca Hospicio	HOS
	Intercuenca 13153	Z25
5	Cuenca Tambo	TAB
lic	Intercuenca 13173	Z26
ICÍ	Intercuenca 13174	Z27
Ba	Intercuenca 13175	Z28
	Intercuenca 13177	Z29
	Intercuenca 13176	Z30
	Intercuenca 13179	Z31
	Intercuenca 13170	Z32
	Cuenca Honda Sur	HSU
	Intercuenca 13155	Z33
	Intercuenca 13157	Z34
	Intercuenca	Z35
	Cuenca de la Concordia	DLC

En la Tabla 5.1 en la columna "Nombre" tenemos unidades 22 hidrográficas han sido que agrupadas de acuerdo a sus factores edáficos y geológicos, factores relativos a la cobertura vegetal, al tamaño de cuenca, relieve, densidad de drenaje У capacidad de almacenamiento, entre otros.

La erosión de suelos en la Región Hidrológica Pacífico 2

La Región Hidrológica Pacífico 2 se encuentra ubicada en la costa sur del Perú (Figura 5.3). Comprende 14 subcuencas que en conjunto suman un área de 58 690.18 km².

En la Figura 5.4 se presenta el gráfico de los niveles de erosión para la Región Pacífico 2, que oscilan entre los 5 a 100 Tn/ha/año y un promedio multianual de 45.8 Tn/ha/año, que representa un grado de erosión Moderada según la clasificación FAO. El nivel más bajo de erosión se presentó en 1992 (5.0 Tn/ha/año), con El Niño 1991-92 y en 1999 se alcanza el más alto nivel de la erosión con un módulo de 100.0 Tn/ha/año.

Figura 5.3. Mapa de ubicación de la Región Hidrológica "Pacífico 2"

La Tabla 5.2 presenta 14 unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Pacífico 2.

Tabla 5.2.UnidadesHidrográficaspara la Región Pacífico 2.

Región	Nombre	Código
	Intercuenca 13711	Z36
	Intercuenca 13713	Z37
	Cuenca Ático	ATI
	Cuenca Pescadores- Caravelí	PES
	Cuenca Chaparra	CHP
0 7	Cuenca Ocoña	000
<u>i</u>	Cuenca Camaná	CAM
Pacíf	Cuenca Quilca-Vitor- Chili	QVC
	Intercuenca 132	Z38
	Intercuenca 133	Z39
	Intercuenca 1319	Z40
	Intercuenca 137151	Z41
	Cuenca Choclón	СНО
	Intercuenca 137153	Z42

Figura 5.4. Erosión hídrica anual estimada para la Región Hidrológica "Pacífico 2"

La erosión de suelos en la Región Hidrológica Pacífico 3

La Región Hidrológica Pacífico 3 se ubica en la costa centro sur del Perú (Figura 5.5). Comprende 19 subcuencas que en conjunto suman un área de 47 697.33 km². La Figura 5.6 representa los niveles de erosión anual para esta región, con valores que llegan hasta los 75.0 Tn/ha/año aproximadamente, y su promedio multianual es de 26.2 Tn/ha/año, que representa un grado de erosión Moderado, según clasificación FAO. El nivel más bajo de erosión se presentó en 1992 (3.0 Tn/ha/año). Por otro lado el nivel más alto de erosión se presentó en 1998 (75.0 Tn/ha/año) con la ocurrencia del Fenómeno El Niño 1997-98.

Figura 5.5. Mapa de ubicación de la Región Hidrológica "Pacífico 3"

Figura 5.6. Erosión hídrica anual estimada para la Región Hidrológica "Pacífico 3"

Tabla 5.3.Unidades Hidrográficas para laRegión Pacífico 3.

Región	Nombre	Código
	Intercuenca 137155	Z43
	Intercuenca 13717	Z44
	Cuenca Chala	CHL
	Intercuenca 1373	Z45
	Intercuenca 13719	Z46
	Intercuenca 13751	Z47
	Intercuenca 137531	Z48
ю	Intercuenca 137533	Z49
0	Intercuenca 137539	Z50
ιŬ	Cuenca Topará	TOP
ac	Cuenca San Juan	SAJ
Δ.	Cuenca Pisco	PIS
	Cuenca Ica	ICA
	Cuenca Grande	GRA
	Cuenca Acarí	ACA
	Cuenca Yauca	YAU
	Intercuenca 137157	Z51
	Intercuenca 137159	Z52
	Cuenca Honda	HON

La Tabla 5.3 presenta 19 unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Pacífico 3.

La erosión de suelos en la Región Hidrológica Pacífico 4

La Región Hidrológica Pacífico 4 se ubica en la costa central del Perú (Figura 5.7). Comprende 38 subcuencas que en conjunto suman un área de 65 566 km². La Figura 5.8 representa los niveles de erosión anual para esta región, con un promedio multianual de 57.0 Tn/ha/año, considerado con grado de erosión Alto, según clasificación FAO. El rango de variación anual de los niveles de erosión está comprendido entre 10.0 Tn/ha/año (1992) y 120.00 Tn/ha/año (1998).

Figura 5.7. Mapa de ubicación de la Región Hidrológica "Pacífico 4"

Región	Nombre	Código
	Intercuenca 1375511	Z53
	Intercuenca 1375531	Z54
	Cuenca Chilca	CHC
	Intercuenca 1375533	Z55
	Intercuenca 1375539	Z56
	Intercuenca 137555	Z57
	Intercuenca 137557	Z58
	Intercuenca 137559	Z59
	Intercuenca 137571	Z60
	Intercuenca 137579	Z61
	Intercuenca 137591	Z62
	Intercuenca 137593	Z63
	Intercuenca 1375951	Z64
	Intercuenca 1375959	Z65
	Intercuenca 137597	Z66
	Intercuenca 1375991	Z67
	Intercuenca 1375999	Z68
04	Intercuenca 137711	Z69
8	Intercuenca 137713	Z70
- U	Intercuenca 1375519	Z7 1
Pa	Cuenca Huamansaña	HUM
	Cuenca Santa	STA
	Cuenca Lacramarca	LAC
	Cuenca Nepeña	NEP
	Cuenca Casma	CAS
	Cuenca Culebras	CUL
	Cuenca Huarmey	HUR
	Cuenca Fortaleza	FOR
	Cuenca Pativilca	PAT
	Cuenca Supe	SUP
	Cuenca Huaura	HUU
	Cuenca Chancay-Huaral	CHU
	Cuenca Chillón	CHI
	Cuenca Rímac	RIM
	Cuenca Lurín	LUR
	Cuenca Mala	MAL
	Cuenca Omas	OMA
	Cuenca Cañete	CAE

Tabla 5.4. Unidades Hidrográficas para la RegiónPacífico 4.

La Tabla 5.4 presenta 38 unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Pacífico 4.

Figura 5.8. Erosión hídrica anual estimada para la Región Hidrológica "Pacífico 4"

La erosión de suelos en la Región Hidrológica Pacífico 5

La Región Hidrológica Pacífico 5 se ubica en la costa norte del Perú (Figura 5.9). Comprende 17 subcuencas que en conjunto suman un área de 31 700.32 km². La Figura 5.10 representa los niveles de erosión anual para esta región, con un promedio multianual de 80.8 Tn/ha/año, considerado con grado de erosión Alto, según clasificación FAO. El nivel más bajo de erosión se presenta en 1985 (4.0 Tn/ha/año), mientras que el nivel más alto se dio en 1998 (330.0 Tn/ha/año), inducido por las lluvias extremas de El Niño 1997-98.

Figura 5.9. Mapa de ubicación de la Región Hidrológica "Pacífico 5"

Figura 5.10. Erosión hídrica anual estimada para la Región Hidrológica "Pacífico 5"

La Tabla 5.5 presenta 17 unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Pacífico 5. Tabla 5.5.Unidades Hidrográficaspara la Región Pacífico 5.

Región	Nombre	Código	
	Intercuenca 137715	Z72	
	Intercuenca 137751	Z73	
	Intercuenca 137753	Z74	
	Intercuenca 137759	Z75	
	Intercuenca 137771	Z76	
ífico 5	Intercuenca 137773	Z77	
	Cuenca Olmos	OLM	
	Cuenca Motupe	МОТ	
	Cuenca Chancay-		
	Lambayeque	CLA	
ac	Cuenca Zaña	ZAN	
Δ.	Cuenca Chamán	CHM	
	Cuenca	JEQ	
	Jequetepeque		
	Cuenca Viré	VIR	
	Cuenca 13773	Z78	
	Cuenca Chicama	HIC	
	Cuenca Moche	MOC	
	Intercuenca 137719	Z79	

La erosión de suelos en la Región Hidrológica Pacífico 6

La Región Hidrológica Pacífico 6 se ubica en la costa norte del Perú (Figura 5.11). Comprende 18 subcuencas que en conjunto suman un área de 42 304.87 km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.12, donde se puede apreciar los niveles de erosión con un promedio multianual de 30.9 Tn/ha/año, valor que califica con grado de erosión Moderado, según clasificación FAO. El nivel más bajo de erosión se presentó en 1990 (menos de 3.0 Tn/ha/año) que fue un año seco; por otro lado el más alto nivel de erosión corresponde a 1998 con una tasa de pérdida de suelo que 108.0 alcanza el valor medio Tn/ha/año, en toda la región, acarreado por las lluvias extremas de El Niño 1997-98.

Figura 5.11. Mapa de ubicación de la Región Hidrológica "Pacífico 6"

La Tabla 5.6 presenta 18 unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Pacífico 6. Tabla.5.6.UnidadesHidrográficaspara la Región Pacífico 6.

Región	Nombre	Código	
Pacífico 6	Cuenca Tumbes	TUM	
	Intercuenca 137779	Z80	
	Cuenca Cascajal	CAC	
	Intercuenca 13779	Z81	
	Intercuenca 1379	Z82	
	Cuenca Bocapán	BOC	
	Intercuenca 13939	Z83	
	Cuenca Zarumilla	ZAR	
	Intercuenca 13951	Z84	
	Cuenca Piura	PIU	
	Cuenca Chira	CHR	
	Intercuenca 13931	Z85	
	Cuenca Fernández	FER	
	Intercuenca 13933	Z86	
	Cuenca Quebrada	OSE	
	Seca	Q3⊑	
	Intercuenca 13935	Z87	
	Intercuenca 1391	Z88	
	Cuenca Pariñas	PAR	

La erosión de suelos en la Región Atlántico 7

La Región Hidrológica Atlántico 7 se encuentra ubicada en el sur de la amazonia peruana (Figura 5.13). Comprende 13 subcuencas que en conjunto suman un área de 144 619.62 km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.14, donde se puede apreciar los niveles de erosión anual estimados para esta región, siendo su promedio multianual 39.9 Tn/ha/año, valor que califica con grado de erosión Moderado, según clasificación FAO. En 1989 la tasa de erosión alcanza su nivel mínimo con 28.0 Tn/ha/año, mientras que en 1986 se presenta el nivel máximo con 70.0 Tn/ha/año como valor promedio para toda esta región hidrológica.

La Tabla 5.7 presenta 13 Unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Atlántico 7.

Tabla	5.7.	Unidades	Hidrográficas
para la	a Regi	ón Atlántico	o 7.

Región	Nombre	Código
	Cuenca Tarau	TAR
	Intercuenca Alto Yuréa	YUR
	Intercuenca Alto Acre	ACR
	Intercuenca Alto Laco	IAC
	Intercuenca 49299	Z01
N	Cuenca Inambari	INA
Atlántico	Cuenca Tambopata	TAM
	Intercuenca Medio Alto Madre de Dios	AMD
	Intercuenca Medio Madre de Dios	MMD
	Intercuenca Medio Bajo Madre de Dios	BMD
	Intercuenca Alto Madre de Dios	MDD
	Cuenca De Las Piedras	DLP
	Cuenca Orthon	ORT

Figura 5.13. Erosión hídrica anual para la Región Hidrológica "Atlántico 7"

Figura 5.14. Mapa de ubicación de la Región Hidrológica "Atlántico 7"

La erosión de suelos en la Región Atlántico 9

La Región Hidrológica Atlántico 9 se ubica en el noroeste de la amazonia peruana (Figura 5.15). Comprende 13 subcuencas que en conjunto suman un área de 74 879 Km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.10 donde se representa una mínima incidencia de la erosión, que ocasiona una tasa promedio multianual de 1.4 Tn/ha/año de pérdida de suelo; valor que alcanza el grado de erosión Leve, según clasificación FAO. En 1992 y 1993 se tiene estimada la menor y mayor tasa de erosión anual con valores promedio de 0.6 y 2.2 Tn/ha/año, respectivamente.

Figura 5.15. Mapa de ubicación de la Región Hidrológica "Atlántico 9"

La Tabla 5.8 presenta 13 unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Atlántico 9. Tabla.5.8.UnidadesHidrográficaspara la Región Atlántico 9

Región	Nombre	Código
	Cuenca Carhuapanas	CAR
	Cuenca Potro	POT
	Intercuenca 49875	Z08
	Intercuenca Alto Marañón I	AMA
•	Intercuenca 49871	Z09
tico 9	Intercuenca 49879	Z10
Atláni	Intercuenca 49877	Z11
	Intercuenca 49873	Z12
	Cuenca Santiago	SAN
	Cuenca Morona	MOR
	Cuenca Pastaza	PAS
	Cuenca Cenepa	CEN
	Intercuenca Medio Marañón	MMA

Figura 5.16. Erosión hídrica anual para la Región Hidrológica "Atlántico 9"

La erosión de suelos en la Región Atlántico 10

La Región Hidrológica Atlántico 10 se encuentra se ubica en el centro oeste de la amazonia peruana (Figura 5.17). Comprende 8 subcuencas que en conjunto suman un área 59 283.49 km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.18, donde se puede apreciar los niveles de erosión anual para esta región, siendo la tasa promedio multianual 101.7 Tn/ha/año, valor que califica con grado de erosión Alto, según clasificación FAO. Los valores extremos del impacto de la erosión para esta región se presentan en 1992 y 1993, con tasas erosivas mínima y máxima de 30.0 y 175.0 Tn/ha/año, respectivamente.

Figura 5.17. Mapa de ubicación de la Región Hidrológica "Atlántico 10"

La Tabla 5.9 presenta 8 Unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Atlántico 10. Tabla 5.9.Unidades Hidrográficaspara la Región Atlántico 10.

Región	Nombre	Código
	Cuenca Crisnejas	CRI
	Intercuenca Alto Marañón IV	MA4
0	Intercuenca Alto Marañón III	MA3
ico 1	Intercuenca Utcubamba	UTC
tlánt	Cuenca Chamaya	СНА
٩	Cuenca Chinchipe	CHN
	Intercuenca Alto Marañón V	MA5
	Intercuenca Alto Marañón II	MA2

Figura 5.18. Erosión hídrica anual para la Región Hidrológica "Atlántico 10"

La erosión de suelos en la Región Atlántico 11

La Región Hidrológica Atlántico 11 se ubica en el centro norte de la amazonia peruana (Figura 5.19). Comprende 10 subcuencas que en conjunto suman un área de 125 355.29 Km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.20 que representa los niveles de erosión anual para esta región, siendo la tasa promedio multianual 17.1 Tn/ha/año, valor que califica con grado de erosión Moderada, según clasificación FAO. Los valores extremos del impacto de la erosión para esta región se presentan en 1992 y 2012, con tasas erosivas mínima y máxima de 6.5 y 30.0 Tn/ha/año, respectivamente.

La **Tabla 5.10** presenta 10 Unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Atlántico 11.

Tabla. 5.10.	Unidades Hidrográficas para
la I	Región Atlántico 11.

Región	Nombre	Código
	Intercuenca Alto Huallaga	AHU
	Intercuenca Medio Huallaga	MHU
Atlántico II	Intercuenca Medio Alto Huallaga	МАН
	Cuenca Huayabamba	HAU
	Intercuenca Medio Bajo Huallaja	МВН
	Cuenca Paranapure	PAA
	Cuenca Mayo	MAY
	Intercuenca Bajo Huallaga	BHU
	Cuenca Biabo	BIA
	Intercuenca Medio Bajo Marañón	MBM

Figura 5.19. Mapa de ubicación de la Región Hidrológica "Atlántico 11"

Figura 5.20. Erosión hídrica anual para la Región Hidrológica "Atlántico 11"

La erosión de suelos en la Región Atlántico 12

La Región Hidrológica Atlántico 12 se ubica en el centro este de la amazonía peruana (Figura 5.21). Comprende 11 subcuencas que en conjunto suman un área de 159 617.43 Km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.22 representa los niveles de erosión anual para la Región Hidrológica Atlántico 12, siendo la tasa promedio multianual de 3.9 Tn/ha/año, valor que califica con grado de erosión Leve, según clasificación FAO. Los valores extremos de erosión hídrica se presentaron en 1992 y 1993, con tasas erosivas mínima y máxima de 8.0 Tn/ha/año. 2.0 у respectivamente.

Figura 5.21. Mapa de ubicación de la Región Hidrológica "Atlántico 12"

La Tabla 5.21 presenta 11 Unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Atlántico 12.

Región	Nombre	Código
	Intercuenca 49919	Z13
	Cuenca Tamaya	TAA
	Cuenca Aguaytía	AGU
	Intercuenca 49917	Z14
	Intercuenca 49915	Z15
0 12	Cuenca CL	
ic.	Cushabatay	005
L I	Cuenca Tapiche	TAP
tlá	Intercuenca 49913	Z16
×	Intercuenca 49911	Z17
	Cuenca Pachitea	PAC
	Intercuenca Medio Bajo Ucayali	MBU

Figura 5.22. Erosión hídrica anual para la Región Hidrológica "Atlántico 12"

La erosión de suelos en la Región Atlántico 13

La Región Hidrológica Atlántico 13 se encuentra ubicada en la zona centro sur de la amazonia peruana (Figura 5.23). Comprende 14 subcuencas que en conjunto suman un área de 190 705.15 Km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.24, que representa los niveles de erosión anual para esta región, siendo la tasa promedio multianual de 58.2 Tn/ha/año, valor que califica con grado de erosión Alta, según clasificación FAO. Los valores extremos de erosión hídrica se presentaron en los años de 1992 y 2012, con tasas erosivas mínima y máxima de 15.0 y 95.0 Tn/ha/año, respectivamente. En el 2012 se presentaron inundaciones históricas en la cuenca amazónica.

Figura 5.23. Mapa de ubicación de la Región Hidrológica "Atlántico 13"

La Tabla 5.12 presenta 14 Unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Atlántico 13. Tabla5.12.UnidadesHidrográficasparalaRegiónAtlántico 13.

Región	Nombre	Código
	Intercuenca 49959	Z18
	Intercuenca 49957	Z19
	Cuenca Cutivireni	CUT
	Cuenca Anapati	ANA
	Cuenca Poyeni	POY
5	Intercuenca 49955	Z20
ntico	Intercuenca 49953	Z21
Atlár	Intercuenca 49951	Z22
	Cuenca Perené	PER
	Cuenca Mantaro	MAN
	Cuenca Pampas	PAM
	Cuenca Urubamba	URU
	Intercuenca Alto Apurímac	ΑΑΡ
	Intercuenca Bajo Apurímac	BAP

Región Hidrológica Atlántico 13

Figura 5.24. Erosión hídrica anual para la Región Hidrológica "Atlántico 13"

La erosión de suelos en Región Hidrológica Titicaca 14

La Región Hidrológica Titicaca 14 se encuentra ubicada en sur del Perú (Figura 5.23). Comprende 19 subcuencas que suman un área de un área de 49 508.92 Km². Sobre toda esta región se ha estimado la tasa de erosión promedio anual para el período de 1981 al 2014, tal como se ilustra en la Figura 5.24 que representa los niveles de erosión anual, siendo la tasa promedio multianual de 26.4 Tn/ha/año, valor que califica con grado de erosión Moderada, según clasificación FAO. Los valores extremos de erosión hídrica se presentaron en 1983 y 2001, con tasas erosivas mínima y máxima de 8.0 y 50.0 Tn/ha/año, respectivamente. El Niño 1982-83 configuró un escenario de sequía en esta región, mientras que La Niña del 2001 estuvo asociada a excesos pluviométricos.

Figura 5.25. Mapa de ubicación de la Región Hidrológica "Titicaca"

La Tabla 5.13. presenta 19 Unidades hidrográficas entre cuencas e intercuencas que forman parte de la Región Hidrológica Titicaca.

Tabla. 5.13. Unidades Hidrográficas para la Región Titicaca.

Región	Nombre	Código
	Cuenca Ilpa	IIP
	Cuenca Callaccame	CAL
	Intercuenca 0155	Z89
	Intercuenca 0157	Z90
	Intercuenca 0175	Z91
	Intercuenca 0171	Z92
	Intercuenca 0173	Z93
4	Intercuenca Ramis	RAM
[a]	Cuenca llave	IIA
cac	Cuenca Coata	COA
Titio	Cuenca Azángaro	AZA
	Cuenca Ushusuma	USH
	Cuenca Caño	CAN
	Cuenca Mauri	MAU
	Cuenca Mauri Chico	MAC
	Cuenca Huancané	HUN
	Cuenca Pucará	PUC
	Cuenca Suches	SUC
	Lago Titicaca	TIT

Figura 5.26. Erosión de suelos para la Región Hidrológica "Titicaca"

El Mapa de erosión de suelos del Perú para el período 1981-2014

En el Mapa de la Figura 5.27 se ilustra los niveles de erosión hídrica a nivel nacional; adicionalmente a dicho mapa se ha insertado la magnitud promedio de la tasa de erosión por región hidrológica, siendo las regiones Pacífico 5 y Atlántico 10 que presentan los mayores niveles de erosión, con 81.0 Ton/ha/año y 162.0 Ton/ha/año, respectivamente.

Figura 5.27. Mapa de Erosión de suelo del Perú (1981-2014)

Superficie afectada según grado de erosión en regiones hidrológicas del <u>Pacífico</u>

Según las categorías de erosión definidas por FAO, se ha determinado el área de afectación según los diferentes niveles o grados de erosión por cada región hidrológica; así tenemos que en la región hidrológica Pacífico 4 se tiene el más alto porcentaje de superficie afectada por erosión hídrica con 48%, con un nivel entre Moderado a Muy Alto. Por otro lado en la región Pacífico 6 los niveles de erosión son los más bajos, con el 17% de su territorio afectado con un nivel entre moderado a muy alto. En la Tabla 5.14 se puede observar los diferentes niveles de afectación en las 6 regiones hidrológicas del Pacífico.

	% Área afectada según Grado de Erosión					
Grado erosión/Regiones	Pacífico 1	Pacífico 2	Pacífico 3	Pacífico 4	Pacífico 5	Pacífico 6
Nula o Ligera	64.0	60.0	69.0	52.0	55.0	83.0
Moderada	21.0	24.0	20.0	23.0	19.0	8.0
Alta	10.0	12.0	9.0	17.0	17.0	5.0
Muy Alta	5.0	4.0	2.0	8.0	9.0	4.0

Tabla 5.14. Porcentaje de área afectada por diferentes grados de erosión en regio	ones
hidrológicas del Pacífico	

En el análisis temporal del grado de erosión por año desde 1981 al 2014, que se presenta en las figuras desde 5.23 a 5.28, se ha determinado una amplia variabilidad de la superficie afectada en cada una de las regiones hidrológicas; en el año 1998, la región pacífico 5 experimentó la máxima afectación en el 70% de su territorio.

Figura 5.28. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Pacífico 1

Figura 5.29. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Pacífico 2

Figura 5.30. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Pacífico 3

Figura 5.31. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Pacífico 4

Figura 5.32. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Pacífico 5

Figura 5.33. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Pacífico 6

Superficie afectada según grado de erosión en regiones hidrológicas del <u>Atlántico</u>

En las cuencas del Atlántico los más serios problemas de erosión se presenta en la región hidrológica Atlántico 10 donde el 62% de su territorio está afectado por niveles de erosión calificado con grado de Moderada a Muy Alto, según la clasificación FAO. Por otro lado, la región Atlántico 8 presenta niveles mínimos de afectación por erosión hídrica. En la Tabla 5.15 se puede observar los diferentes porcentajes de áreas de afectación por erosión hídrica en cada una de las regiones hidrológicas del Atlántico.

En el análisis temporal de la erosión por año, desde 1981 al 2014, que se presenta en la secuencia de figuras desde 5.29 a 5.34 se ha determinado una amplia variabilidad de la superficie afectada en cada una de las regiones hidrológicas; en el año 1993, la región Atlántico 10 experimentó la máxima afectación en el 67.0% de su territorio.

	% Área afectada según Grado de Erosión						
Grado erosión/regiones	Atlántico 7	Atlántico 8	Atlántico 9	Atlántico 10	Atlántico 11	Atlántico 12	Atlántico 13
Nula o ligera	89.0	100.0	98.0	38.0	87.0	96.0	55.0
Moderada	5.0	0.0	2.0	23.0	7.0	2.5	23.5
Alta	3.0	0.0	0.0	24.0	4.0	1.0	14.5
Muy Alta	3.0	0.0	0.0	15.0	2.0	0.5	7.0

Tabla 5.15. Porcentaje de área afectada por diferentes grados de erosión en regiones

hidrológicas del Atlántico

Figura 5.34. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica Atlántico 7

Figura 5.35. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica Atlántico 9

Figura 5.36. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica Atlántico 10

Figura 5.37. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica Atlántico 11

Figura 5.38. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica Atlántico 12

Figura 5.39. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica Atlántico 13

<u>Superficie afectada según grado de erosión en región hidrológica del</u> <u>Titicaca</u>

En esta región hidrológica, el 30% de su territorio tiene problemas de erosión Moderada; el 9% es afectado por erosión Alta y el 1% por erosión Muy Alta. En el año 2001 el 51% del territorio de esta región fue afectado por el más alto nivel de erosión entre Moderado a Muy alto.

Tabla 5.16. Porcentaje de área afectada por diferentes grados de erosión en Regiónhidrológica del Titicaca

	% Área afectada según Grado de Erosión					
Grado erosión	Nula o ligera	Alta	Muy Alta			
% Área afectada	60.0	30.0	9.0	1.0		

Figura 5.40. Evolución del porcentaje de área afectada por diferentes grados de erosión en la región hidrológica del Titicaca

5. CONCLUSIONES

Debido a la variabilidad del clima y el relieve del territorio el fenómeno erosivo en el Perú muestra características diferenciadas según la región de análisis; siendo más alta la tasa de erosión en la región andina, donde la fuerte pendiente del terreno y lluvia son factores condicionantes para la ocurrencia de dicho fenómeno.

Los factores que tienen mayor incidencia en el fenómeno de la erosión hídrica son el Factor de erosividad de lluvias (R) y el Factor topográfico (LS), de acuerdo al modelo RUSLE utilizado para la estimación de la pérdida de suelo.

En la región hidrográfica del Pacífico, se ha cuantificado tasas de erosión comprendidas entre 26.2 Tn/ha/año y 81.0 Tn/ha/año que corresponde a las regiones hidrológicas Pacífico 3 y Pacífico 5, respectivamente. Así mismo, en la región Pacífico 5 se ha determinado que el 26% de su territorio está afectado por erosión en grado Alto y Muy Alto, según la clasificación de FAO.

En la región hidrográfica del Atlántico, se ha cuantificado la menor tasa de erosión en la región Atlántico 8, con 0.01 Tn/ha/año. En la región Atlántico 10, el nivel de erosión ha sido estimado en 162.0 Tn/ha/año. En esta última región se ha determinado que el 39% de su territorio está afectado por erosión en grado de Alto y Muy Alto.

En la región hidrográfica del Lago Titicaca se ha cuantificado una tasa de erosión de 26.0 Tn/ha/año, así mismo se ha estimado que el 10% del territorio de esta región está afectado por erosión en grado de Alto y Muy Alto.

En la región hidrográfica del Pacífico, los Eventos lluviosos de El Niño 1982-83 y 1997-98 han ocasionado la más alta tasa de erosión en las regiones hidrológicas Pacífico 3, Pacífico 4, Pacífico 5 y Pacífico 6. En las regiones Pacífico 1 y Pacífico 2, la mayor tasa de erosión se presentó durante Eventos La Niña, como lo ocurrido el 2000-2001.

6. REFERENCIAS BIBLIOGRÁFICAS

- Durre I, Menne MJ, Gleason BE, Houston TG, Vose RS. (*2010*). Comprehensive automated quality assurance of daily surface observations. *Journal of Applied Meteorology and Climatology* 49 (8): 1615–1633 doi: 10.1175/2010JAMC2375.1
- Derpsch, R., Roth, C. H., Sidiras, N., Kopke, U., Krause, R., & Blanken, J. (1991). Controle da erosão no Paraná, Brasil: Sistemas de cobertura do solo, plantio direto e preparo conservacionista do solo (Vol. 245). Eschborn,, Germany: GTZ.
- FAO-PNUMA-UNESCO. 1990. Metodología provisional para la evaluación de la degradación de los suelos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia. 86 p
- Ferrero VO. (*2004*). Hidrología Computacional y Modelos Digitales del Terreno Teoria, práctica y filosofía de una nueva forma de análisis hidrológico: 365
- Gonzáles del Tánago M. (*1991*). La Ecuación Universal de Pérdidas de Suelo. Pasado, presente y futuro. *Ecología* 5: 13-50
- Grayson RB, Ladson DAR. (*1991*). Digital Terrain Modelling: a Review of Hydrological, Geomorphological, and Biological Applications. 5 (September 1990): 3-30
- Hengl T, de Jesus JM, MacMillan R a, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, et al. (*2014*). SoilGrids1km--global soil information based on automated mapping. *PloS one* 9 (8): 17 doi: 10.1371/journal.pone.0105992
- INRENA/IHR/DIRHI/SIC. (2007). Delimitación y codificación de Unidades Hidrográficas del Perú: 1-104
- IUSS Grupo de Trabajo WRB. (*2007*). *Base Referencial Mundial del Recurso Suelo*. Roma. Kim HS. (*2006*). Soil erosion modeling using RUSLE and GIS on the Imha watershed, South Korea: 120
- Loredo Osti C, Beltrán López S, Moreno Sánchez F, Casiano Domínguez M. (2007). *Riesgo a la erosión hídrica y proyección de acciones de manejo y conservación del suelo en 32 microcuencas de San Luis de Potosí*. México.
- MINEM. (2011). Atlas del potencial hidroeléctrico del Perú. Lima, Perú.
- Muñoz Gutiérrez R. (*2006*). Erosión Hídrica en la microcuenca San Pedro Huimilpan: Valoración Integrada para su Control.Universidad Autónoma de Querétaro.
- National Geomatics Center of China. (*2014*). Global Land Cover Dataset (GlobleLand30) Product Description
- Of H, Development S, The IN, Appalachians F, Pennsylvania OF. (*1945*). Geological Society of America Bulletin. *Geological Society Of America Bulletin* (1) doi: 10.1130/0016-7606(1945)56
- Oliveira PTS, Rodrigues DBB, Sobrinho TA, Panachuki E, Wendland E. (*2013*). Use of SRTM data to calculate the (R)USLE topographic factor. *Acta Scientiarum. Technology* 35 (3): 507-513 doi: 10.4025/actascitechnol.v35i3.15792
- Pan J, Wen Y. (*2014*). Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. *Natural Hazards* 71 (3): 2187-2205 doi: 10.1007/s11069-013-1006-2

- Peterson TC, Vose RS. (*1997*). An Overview of the Global Historical Climatology Network Temperature Database. *Bulletin of the American Meteorological Society* 78 (12): 2837-2849 doi: 10.1175/JTECH-D-11-00103.1
- Renard K, Foster G, Weesies G, McCool D, Yoder D. (*1997*). *Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)*. doi: DC0-16-048938-5 65-100.
- Reuter HI, Nelson A, Jarvis A. (*2007*). An evaluation of void-filling interpolation methods for SRTM data. *International Journal of Geographical Information Science* 21 (9): 983-1008 doi: 10.1080/13658810601169899
- Rivera Ruiz P. (*2012*). El proceso lluvia-escurrimiento-erosión en laderas y microcuencas instrumentadas. *Tecnología y Ciencias del Agua* III: 151-166
- SENAMHI. (*2014*). El fenómeno EL NIÑO en el Perú. Plan Nacional de Gestión del Riesgo de Desastre PLANAGERD. Reporte. *Plan Nacional de Gestión del Riesgo de Desastre PLANAGERD*: 1-36
- SIG-IRH / INRENA. (*2008*). Resolución Ministerial Nº 033-2008-AG. Lima, Perú. Available at: http://www.ana.gob.pe
- Tang Q, Xu Y, Bennett SJ, Li Y. (*2014*). Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. *Environmental Earth Sciences* 73 (4): 1715–1724 doi: 10.1007/s12665-014-3523-z

Viers GG. (1974). Geomorfología.

Wischmeier WH, Smith DD. (*1978*). *Predicting rainfall erosion losses*. doi: 10.1029/TR039i002p00285

4. ANEXO

Anexo 1

Mapas del Factor de Erosividad Pluvial Anual para el periodo de 1981 hasta el 2014

Anexo 2

Mapas del Factor de Topográfico, Factor de Erodabilidad, Factor de cobertura Vegetal y Factor de Prácticas de Conservación

Anexo 3

Mapas de los resultados de Erosión de Suelos del Perú para el periodo de estudio de 1981 hasta el 2014

Anexo 1

Mapas del Factor de Erosividad Pluvial Anual para el periodo de 1981 hasta el 2014

Anexo 2

Mapas del Factor de Topográfico, Factor de Erodabilidad, Factor de cobertura Vegetal y Factor de Prácticas de Conservación

Anexo 3

Mapas de los resultados de Erosión de Suelos del Perú para el periodo de estudio de 1981 hasta el 2014

Central telefónica: (511) 614-1414 Atención al usuario: (511) 470-2867 Dirección de Hidrología: (511) 614-1414 anexo 465

Consultas y sugerencias: ofelipe@senamhi.gob.pe hidrología_dgh@senamhi.gob.pe

COLOMBIA

Senamhi

Servicio Nacional de Meteorología e Hidrología del Perú - SENAMHI